4,039 research outputs found

    Drinfeld second realization of the quantum affine superalgebras of D(1)(2,1;x)D^{(1)}(2,1;x) via the Weyl groupoid

    Get PDF
    We obtain Drinfeld second realization of the quantum affine superalgebras associated with the affine Lie superalgebra D(1)(2,1;x)D^{(1)}(2,1;x). Our results are analogous to those obtained by Beck for the quantum affine algebras. Beck's analysis uses heavily the (extended) affine Weyl groups of the affine Lie algebras. In our approach the structures are based on a Weyl groupoid.Comment: 40 pages, 1 figure. close to the final version to appear in RIMS Kokyuroku Bessatsu (Besstsu) B8 (2008) 171-21

    Stability of Spinmotive Force in Perpendicularly Magnetized Nanowires under High Magnetic Fields

    Full text link
    Spinmotive force induced by domain wall motion in perpendicularly magnetized nanowires is numerically demonstrated. We show that using nanowires with large magnetic anisotropy can lead to a high stability of spinmotive force under strong magnetic fields. We observe spinmotive force in the order of tens of microvolt in a multilayered Co/Ni nanowire and in the order of several hundred microvolt in a FePt nanowire; the latter is two orders of magnitude greater than that in permalloy nanowires reported previously. The narrow structure and low mobility of a domain wall under magnetic fields in perpendicularly magnetized nanowires permits downsizing of spinmotive force devices.Comment: submitted to Applied Physics Letter

    Structure-activity relationships of synthetic analogs of jasmonic acid and coronatine on induction of benzo[c]phenanthridine alkaloid accumulation in Eschscholzia californica cell cultures

    Get PDF
    A facile test system based on the accumulation of benzo[c]phenanthridine alkaloids in Eschscholzia californica cell suspension culture (an indicator of defense gene activation) has been used to analyze a series of synthetic compounds for elicitor-like activity. Of the 200 jasmonic acid and coronatine analogs tested with this system, representative results obtained with 49 of them are presented here. The following can be summarized concerning structure-actvity relationships: there is a large degree of plasticity allowed at the C-3 of jasmonic acid in the activation of defense genes. The carbonyl moiety is not strictly required, but exocyclic double bond character appears necessary. The pentenyl side chain at C-2 cannot tolerate bulky groups at the terminal carbon and still be biologically active. Substitutions to the C-1' position are tolerated if they can potentially undergo beta-oxidation. Either an alkanoic acid or methyl ester is required at c-l, or a side chain that can be shortened by beta-oxidation or by peptidase hydrolysis. Coronatine and various derivatives thereof are not as effective as jasmonic acid, and derivatives in inducing benzo[c]phenanthridine alkaloid accumulation. Jasmonic acid rather than the octadecanoic precursors is therefore considered to be a likely signal transducer of defense gene activation in planta

    Hyperbolic Kac-Moody superalgebras

    Full text link
    We present a classification of the hyperbolic Kac-Moody (HKM) superalgebras. The HKM superalgebras of rank larger or equal than 3 are finite in number (213) and limited in rank (6). The Dynkin-Kac diagrams and the corresponding simple root systems are determined. We also discuss a class of singular sub(super)algebras obtained by a folding procedure

    Lax Operator for the Quantised Orthosymplectic Superalgebra U_q[osp(2|n)]

    Full text link
    Each quantum superalgebra is a quasi-triangular Hopf superalgebra, so contains a \textit{universal RR-matrix} in the tensor product algebra which satisfies the Yang-Baxter equation. Applying the vector representation π\pi, which acts on the vector module VV, to one side of a universal RR-matrix gives a Lax operator. In this paper a Lax operator is constructed for the CC-type quantum superalgebras Uq[osp(2n)]U_q[osp(2|n)]. This can in turn be used to find a solution to the Yang-Baxter equation acting on VVWV \otimes V \otimes W where WW is an arbitrary Uq[osp(2n)]U_q[osp(2|n)] module. The case W=VW=V is included here as an example.Comment: 15 page

    Pressure-induced phase transition and bi-polaronic sliding in a hole-doped Cu_2O_3 ladder system

    Full text link
    We study a hole-doped two-leg ladder system including metal ions, oxygen, and electron-lattice interaction, as a model for Sr_{14-x}Ca_xCu_{24}O_{41-\delta}. Single- and bi-polaronic states at 1/4-hole doping are modeled as functions of pressure by applying an unrestricted Hartree-Fock approximation to a multiband Peierls-Hubbard Hamiltonian. We find evidence for a pressure-induced phase transition between single-polaron and bi-polaron states. The electronic and phononic excitations in those states, including distinctive local lattice vibrational modes, are calculated by means of a direct-space Random Phase approximation. Finally, as a function of pressure, we identify a transition between site- and bond-centered bi-polarons, accompanied by a soft mode and a low-energy charge-sliding mode. We suggest comparisons with available experimented data

    The table mountain 8-mm-wavelength interferometer

    Get PDF
    The system components, performance, and calibration of two element radio interferometer operating at 8.33 mm wavelength are discussed. The interferometer employs a 5.5 m and a 3 m diameter antenna on an east-west baseline of 60 or 120 m, yielding fringe spacings at transit of 28 or 14 in. respectively. The broad intermediate frequency bandpass of 100 to 350 MHz and the system noise temperature of 500 K provide high sensitivity for the measurement of continuum sources. The interferometer has been used for high resolution studies of the planets and the Sun, and it is currently being adapted to study solar flare emissions at high spatial and time resolution
    corecore